On composite n dividing φ(n) T(n)+2
محتوى المقالة الرئيسي
الملخص
الملخص EN
Let φ denote the Eular's Totitient .
For any positive integer n let τ(n) denote the number of its positive divisors .
If T is the set of all composite numbers n > 4 for which n divides φ(n) τ(n) + 2 , we prove that every nЄT has at least five distinct prime factors .
Our result improves that of Yong- Gao and Jin -Hui Fang [4] and of Subbarao [3] .The proofs presented in the paper entirely different from the earlier authors .
تفاصيل المقالة
كيفية الاقتباس
al-Aydarus, Husayn Abd al-Qadir Muhamma. (2023). On composite n dividing φ(n) T(n)+2. مجلة الأندلس للعلوم التطبيقية, 7(12), 15. استرجع في من http://andalusuniv.net/journ/index.php/AJAS/article/view/742
القسم
المقالات