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On Composite n dividing @(n) t(n) + 2

Abstract :

Let ¢ denote the
Eular's Totitient . For any positive
integer n let 7(n) denote the number
of its positive divisors . If T is the
set of all composite numbers n > 4
for which n divides ¢ (n) t(n) + 2
, We prove that everyn € T has at
least five distinct prime factors .
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Our result improves that of Yong-
Gao and Jin —Hui Fang [4] and of
Subbarao [3] .The proofs presented
in the paper entirely different from
the earlier authors .
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1. Introduction

Let ¢ denotes is Euler totient function . For any positive integer n let
7(n) denote the number of positive divisors of n. Clearly n divides
p(m)t(n) + 2 if nis prime or n = 4 .Is this true for any composite n other
than 4? That is, if

1) Tp={n:pm)tn)+2=kn}fork=123,..andT = U, Ty
Then the question seeks composite n > 4 in T .Posing this problem in
([2], B37) it is recorded that Jud McCranie has shown that

(1.2) There is no composite n € T with4 <n < 101° .

It is easy to see that every n € T is a squarefree so that it can be

written as

(1.3) n = pipyp3 ... oy With pypPy<ps ... < p,Where w(n) = r is the
number of distinct prime factors of n.

Yang-Gao Chen and Jin-Hui Fang[4] have shown that if n € T is of

the form (L.3) then p; < (r 27~1)2"" for 1 < i < r .and remarked
(see[4],Remark p.1) that using this inequalities they could prove that

(1.4) w(m) =5forneT.

1974, M.V.Subbarao [3] considered the same problem and proved that

1.5 . Theorem ([3], Theorem3).Any composite n € T withn > 4 must have
at least four distinct odd prime factors.

In fact he claimed that numerous computations were made (the details
of which were not given in that paper) to prove Theorem 1.5.Also he
showed the following:

1.6 Theorem ([3], Theorem4)
i) Ty,=0ifk=10r3<k<14.
ii) T, = {4}UP where P the set of all primes .
iii) Ifn €T,s then w(n) =4or5.
Further he gave the possible values for w(n) for any n € T, with 16 <
k <1024.
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The purpose of this paper to give an entirely different proofs for (1.4).
and Theorem 1.5; and to improve both of them and also 1.6 (iii). In fact , we
prove
1.7 Theorem. Any composite n € T with n > 4 we must have at least five

distinct odd prime factors .
In the process we show that T;5 = @ , improving (iii) of Theorem 1.6 ; and
also give alternate prove of (i) of the same theorem .

2. Preliminary results

Let n denote the composite number in T with n > 4 and is the form (1.3)
.Then t(n) = 2" sothat @(n)t(n) + 2 is of the form 2M where M is odd
from which the following are immediate:
(2.1) ifn € T, then k and n are of opposite parity and that the even
number of them is not divisible by 4 .

and
(22) T, =0 if 4|k thatis, T, =Tg =T, =-=0.

In the rest of the paper , unless otherwise mentioned , n always

composite number in T with n > 4 and is of the form (1.3) so that
23) (Pp1—Dp,—1)..(pr— 12" + 2 = kp,p,p3 ... 0y fOr somek >
1.
2.4 Lemma. If n € Tpwith w(n) =7 then k<2™1 or k<2’
according as n is even or odd

Proof : Suppose n € T, isevensothatp, = 2. ifk > 271 then it follows
from (2.3) that

2" Yp,ps .0y — (2 — D(p3 — 1) ... (p, — 1) < 1}, a contradiction .
If n€ T, isodd and if k > 27 then (2.3) gives the inequality

2" {p1py .0y —(p1 — D, — 1) ...(p, — 1) <2} , a contradiction
since r > 1. Thus the lemma holds.

Let {qg;};=, be the sequence of prime numbers in increasing order . that
1S,g1=2,9, =3, qG3=5,q,=7,... Let
(25) Q(r) = [Tle; - forr = 1,2,3,...

qis1-1"’
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Note that Q(1) = %,Q(Z) = 1?5,(2(3) =3 . by simple induction on

16’

r the following inequalities can be proved
(26) Q) <2 forr=1.
27 Q) <2 forr=2.

(28) Q@) <Z-forr>4,
We need the following well-know simple result :
(29) — isadecreasing function for x > 1

For n € Ty, we get from (2.3)that

=" o (Pi)s 2
(210) B = o5 =TI, (pi_1)> 25

If nis even then p; > ¢q; for 1 <i <rso that, by (2.9),we have P, <
r I =20@( —1) ; while if nisodd then p; > g;,,for1 <i<r so

=lg—1—
that again by (2.9), B, < [/~ q_q_il = Q(r). Thus
2Q0(r—1) if niseven
(211) B < { Q(r) if nis odd

Now combining (2.10) and (2.11) we have , for n € T}, with w(n) = r that
27 20(r — 1) if nis even

(212) <k < { Q(r) ifnis odd
213 Lemma.(i) T, =90. (i) T, ={4}uU{q;:i=1}and (iii) T; = @.
Proof : (i) If possible n € Ty, then (2.1) gives n is even and therefore by
(2.12),2" < P, < 2.Q(r — 1) showing Q(r — 1) > 2"!  acontradiction to
(2.6). Hence T, = 0.

(i) Clearly {4} U {q;:i = 1} € T,. Conversely,ifn € T, andn #
4. Then n is odd and therefore by (2.12), Q(r) > 2"~1, which holds only for
r = 1 in view of (2.7) showing n is a prime that is , n = g; for some i > 1.
Thus T, € {4} U {q;:i = 1}.

(iii) If possible , n € T5. Thenp; = 2 and r = 2 so that by(2.12)
we get Q(r — 1) > %_1 which holds, in view of (2.8) only for r = 2 or 3.
But when r = 2 the equation (2.3) with k = 3 gives (p, —1)4 + 2 = 6p,
which has no solution in prime p, ; and when r = 3 the equation (2.3) with
k =3 reduces

(2.14) pps +5 = 4(p, + p3)
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So that -+ — > - which is impossible if p, > 7 and therefore p, =

D2 p3

3 or5;and in either case there is no prime p; satisfy (2.14) . Thus T; = @ .
2.15 Remark. Inview of (2.2) and Lemma 2.13 , any n such that n € T},
forsome k > 5and k # 0(mod 4) .

Now for any k =5 let t, be the unique integer such that

2tk < |k < 2%k, Forexample , tg =tg =t;, = tg =3; tg=t19 = t11 =
tip = =tg=4;..and more generally t,j  =t,j,, =tyj,3=""=
tyjv1 =j+1 for j > 2.

An immediate consequence of the definition of ¢, and the Lemma 2.4 is the
following :
2.16 Lemma. If n € T, withw(n) = r thenr > t;, + 1 or t, according
asn is even or odd .
2.17 Remark. It follows from Lemma 2.16 thatany n € T}, (k = 5) has at
least t;, odd prime factors. In particular , in view Lemma 2.13, it follows that
any n has at least 3 odd prim factors.
The following result due Subbarao ([3], Theorem 2(B)) is used often in this
paper without citing it also :
(2.18) If p; and p; are distinct odd prime factor of n then p; # 1(mod pj) .
2.19 Lemma. Suppose k is odd,n € T, and w(n) =r.Then r —3 <
ay, by, ci or djaccording as gcd(n, 15) = 15, 3,5 or 1 respectively, where

_ (In15k/32) _ (In33k/80)
% = Tn@2/17) k= In(32/17)
_ (In35k/96) _ (In77k/240)

%= m@a/13) " T Tinza/13)
Proof: Given k is odd, n € T} with w(n) = r .Then n is of the form (1.3)

with p; =2 and p; # 1(modp;) for 2<i#j<r and also B, =
2.1, (ﬁ) = 2P (say) so that by (2.12) we have

2T—1

(2.20) P:>

i) Suppose gcd(n,15) = 15sothat 3 In,and 5 |n .Hence
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p2 = 3,p3 = 5,p; # 1(mod 3),p; # 1(mod 5) for 4 < i < r therefore

p; = 17 for i > 4 and hence by (2.9),we get

(2.21) P; < 35 .(E)r—3

2 4 16
r— r—3
Now combining (2.20) and (2.21) we get Zk - < %5 C—Z) , which
r—3 r—3
can be written as (j—j) % < 18—5 or (%) < %" . giving the first part of

the lemma.
i) If gcd(n, 15) = 3.then p, =3 and by (2.18), p; =11 and p; = 17

r—3
for 4 <i<r.hence B, < S (E) which together with (2.20)
2 10 16

. 2r-1 33 [17\"73 32\" 73 33k . .
gives < =. (—) and therefore (—) < = giving the
k 20 \16 17 80

second part of the Lemma .
iii) If gcd(n,15) =5 thenp, =5,p; =7 and p; = 13 for i > 4,

r—3
(£) - which together with(2.20) gives

12

5 7

showing that B; <~=.
4 6

r—3

(%) < % proving that r — 3 < ¢y .

iv) If gcd(n,15) =1 thenp, > 7,p3 2 11,p; = 13 for i > 4
7 11 (13

-3
showing that B, < PR .(E)r which together with(2.20) gives

2r-1 77 [13\"73 20\"3 77k . .
<—. (—) or (—) < —— giving r — 3 < d,
k 60" \12 13 240

2.22  Lemma. Supposes k is even,n € T, and w(n) =r.Then r — 2 <
ay, by, ci or d; according as gcd(n,15) = 15,3,5 or 1 respectively where
ay, by, ¢, d; are as defined in Lemma 2.19.

Proof: Given k is even,n € T, and w(n) = r .Then n is odd and if it is the
form (1.3), then each p; is odd

i) If gcd(n,15) = 15 then p; = 3,p, =5, and in view of (2.18) p; >

; 2" 3 5.17\""% .
17 for i > 3 so that by (2.10) and (2.12) , we get =< E'Z(E) which
r—2
can be written as (2) < Bk showingr — 2 < ay .
17 32
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i) If gcd(n,15) =3 then p; =3,p, =11 and (2.18) ,p; = 17 fori > 3
2" 33 (17\"7? 32\""2 33k

sothat?<5.(g) :><E) <E=>T'—2<bk.

iii) If gcd(n,15) = 5then p; = 5,p, = 7and p; = 13 for i > 3 so that

27 35 (13\"7% . . . 24\""% 35k

= < Z'(E) which implies (1—3) <Se DT 2<cy .

iv) If gcd(n,15) =1 .then p; = 7,p, =11 andp; = 13 fori > 3 so

21 77 (13\""% .. . 240\"7% 77k
that — < —. (—) which implies (—) <—=>r—-2<d.
k 60 \12 13 240

Thus lemma is completely proved.

We give below a table of values of ay, by, ¢, and dj, for certain values of

k.
k a by, Ck d;
5 1.35 1.14 0.97 0.77
6 1.63 1.433 1.27 1.06
7 1.88 1.67 1.528 1.31
9 2.27 2.07 1.93 1.72
10 2.44 2.24 2.10 1.90
11 2.59 2.39 2.265 2.05
13 2.85 2.65 2.537 2.32
14 2.97 2.77 2.65 2.45
15 3.08 2.88 2.77 2.56
(Table 1)

3. New proof of Theorem 1.5
In this part we present a proof of Theorem 1.5 which is entirely
different from the one given in [3] .First we proof some lemmas .

31 Lemma.Ts=0.

Proof : If possible, n € T and is of the form (1.3) . Then p; = 2 and since
ts = 3. we get on one hand, by Lemma 2.16 Lemma that » > 4 . On the
other we have r<as+3, bs+3 ,c5+3 or ds+ 3 according as
gcd(n, 15) = 15,3,5 or 1 respectively , by Lemma 2.19, so that from Table
1, follows r <3 if gcd(n,15)=150r1 ; and r<4 in the case
gcd(n,15) = 15 or 3. Therefore gcd(n, 15) = 50r 1 are impossible; and
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that r = 4 in the case gcd(n, 15) = 15 or 3 showing 3 |n in both the cases
Thusif n = p;p,pspsthenp; = 2,p, = 3,5 < p; < p, and (2.3) with k =
5and r = 4 gives
(3:2) psps+17 =16(ps +p4) -

Now we prove (3.2) in not solvable for primes p; and p, .

In case gcd(n, 15) = 15 we have p; = 5so that (3.2) reduces

11p, + 63 = 0 which is impossible for any prime p, .Therefore (3.2)is
not solvable in this case. Also in case gcd(n, 15) = 3 then p; # 1(mod3)
and p, £ 1(mod3) .Further if p; € {q < 47: q is prime,q £ 1(mod 3)}
it is easy to see that there is no prime p, satisfying (3.2.) exists. That is for

(3.2)to be solvable we must have p; > 47 and p, = 53 . But in this case , by
(2.10) and (2.9) , we get 3.2 = % <P S% .S.%.g = % =312 .a
contradiction. Hence equation (3.2) is not solvable .Thus Ts = @.

3.3  Lemma. If possible,n € T is in the form (1.3), Then by Lemma 2.16,
we have on one hand r > 3 ; and on the other by Lemma 2.22 and table 1,
r < 3.Thus r = 3 so that n = p;p,p3 with p; < p, < p; where each p; is

odd and also
28 4
(34) B, > —=3> 1.33
Also (2.3) with k = 6 and r = 3 gives
(3.5) p1p2ps + 4(py + P2 +p3) = 4(p1p2 + P2ps + P3p1) + 3.

Now we show that (3.5) is no solvable for odd primes p,p,, ps. First
we prove p; € {3,5,7}.1f p; = 3 then by (3.5) we have p,p; + 8(p, + p3) =
9 which is not solvable for primes p, and p; because the least value of the
left greater than 9, if p; = 5 then (3.5) gives p,p; + 17 = 16(p, + p3) for

which we cannot find p; when p, € {q < 37: q is prime,q # 1(mod 5)}
5 37 43 _ 7955

that is means p, = 37 and p; = 43. In this case B, < 23 o <
1.316

Contradiction (3.4).

Finally If p, = 7 then (3.5) gives p,ps; + 25 = 24(p, + p3) there is

no prime p; when p, € {11,13} showing p, = 17and hence B, < %1—21—2 =
2261

T < 1.309 , contradiction (3.4) . Thus p; = 11 so that p, = 13 in which
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case B, < LB LT_281 267 , again contradiction (3.4) .Hence (3.5)
10 12 16 1920

has no solution proving T = @ .
Notation. An equation will be said to be Type A if it not solvable in primes
because the least value of one side of the equation greater than its other side
-An equation to be solvable in primes will be said to be of Type B, if it is not
solvable for the least among them less than the prim q.

For example in the proof of lemma 3.3 the equations reduce from (3.5)
in the cases p; = 3, p; = 5 and p; = 7 are respectively equations Type A,
Bz, and B;; . As illustrated in the same lemma one can be prove that all
equations of Type B, are also not solvable .
36 Lemma.T,=0.
Proof : If possible, n € T, and is the form (1.3) . Then using Lemma 2.16 ,
Lemma 2.19 and table 1 and by (2.20)

3
37) B>>>1142.
Also if n = pyp,p3ps With 2 = p; < p, < p3 < p, ,then (2.3) with k =
7and r = 4 gives

(3.8)  p2p3ps +8(p2 + 3 +Pa) = 8(P2p3 + P3pa +D2ps) +7 .
If p, €{3,5,7,11,13,17,19} , from (3.8) we obtained the following

equations and their type are given bellow :

P2 Reduced Equation Type
3 5psps + 16(p3 +ps) = 17 A

5 5psps + 32(p3 + py) = 33 A

7 P3ps +48(ps + py) =49 A
11 3p3ps + 81 =80(ps + ps) B74
13 5p3ps + 97 = 96(ps + ps) By7
17 Ipap, + 129 = 128(p3 + p.) Bsq
19 11psp, + 145 = 144(ps + p,) Bsq

Table 2

That is for (3.8) to be solvable we must have p, > 23 ,p; = 29 andp, =

31 .But in this case
* < 23 29 31 _ 20677

<= === < 1.119 , a contradiction to (3.7) .that is p, >
22 28 30 18480
23 is also impossible showing T, = 0.
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Proof of Theorem 1.5

In view of (2.2) , Lemma 2.13, Lemma 3.1, Lemma 3.3, and Lemma
3.6 it follows that any composite n > 4 in T is in T, for some k > 9 .since
t, = 4 for k > 9 we get by Remark 2.17, any composite n > 4 in T has at
least four distinct odd prime factors.
4.  Proof of Theorem 1.7.

Theorem 1.7 is an immediate consequence of lemma given bellow in view of
Remark 2.17 , since t,, > 5 for k > 17.

1.1 Lemma. T, =@ for9 <k < 16.

Proof: T,, =T =0,by(2.2).

We present the proof of Tg9 =T =@ only and we can use the same
technique to proof the T;; = Ty3 = Tyq = T15 = @.

i) If possible , n € Tq with w(n) = r so that n iseven and r > 5,by
Lemma 2.16 on one hand , and on other by Lemma 2.19, and Table 1, r <
5if gcd(n,15) = 15 or 3 while r < 4 if gcd(n, 15) = 5 or 1 .Therefore
gcd(n,15) = 5or 1 isimpossible ; and that » = 5 if gcd(n, 15) = 150r 3.

Further if n = pyp,p3p4ps then p; =2 and p, =3 and5 < p; <
ps < ps and (2.3) with k =9 ,r =3 . gives

(4.2) 5p3paps +32(p2 + p3 + ps) = 32(p3ps + P3Ps + Paps) + 31
Also (2.20) gives

43) P> >1777
Since p, =3 it is follows p; & {7,13} . Putting p; = 5,p; = 11
successively in (4.2) the reduced equations are 128(ps + ps) + 7p4ps =

129 and 23p,ps + 321 = 320(p, + ps) which are respectively type A and

B, . Therefore (4.2) is not solvable if p; € {5,7,11,13} . Thus p; = 17 and

i i * o317 23 29
hence p, =23, ps =29 in which case P, 32.16.22.28<1.726 , a

contradiction to (4.3) . Thatis, p; = 17 is also impossible shown Tq = @

i) If possible, n € Ty, and is of the form (1.3) . Then on one hand

r =4, by Lemma 2.16 ; and one the other by Lemma 2.22 and Table 1, it

is follows r < 4 in case gcd(n, 15) = 15,3 or 5 while r < 3 in case
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gcd(n,15) = 1. Therefore gcd(n, 15) # 1. Alsor = 4 and gcd(n,15) =
15,3 or 5 . Further by (2.12) ,

2t
4.4) By > o5 =16

Let n = pyp,ap3ps With p; < p, < p3; < py ,Where each p;'s is odd ;
then (2.3) with k = 10 and r = 4 gives
(45)  3p1p2p3pa + B(P1P2 + P13 + P1Ps + P2P3 + P2Pa + P3pa) +9
= 8(p1P2P3 + P1P2P4 + P1P3Ps + D2P3Ps) + 8(p1 + 02 +
P3 + Da)
Now, we will show that (4.5) is not solvable for odd primes
pi(i =1,2,3,4) .
If gcd(n, 15) = 15 thenp, =3 ,p, =5 sothat (4.5) reduces to
64(p; + py) + 11p3p, = 65,an equation of type A .Then gecd(n, 15) #
15 .
If gcd(n, 15) = 3 thenp, = 3. we show thatp, > 47 . Clearly p, ¢
{7,13,19,31,37,43} since each prime q in the set is = 1(mod3) . Also if
p, € {11,17,23,29,41} then (4.5) reduce to the equations as given bellow :

P2 Reduce Equation Type
11 S5psps + 160(ps + py) = 161 A
17 P3Pa + 257 = 256(p3 + pa) Bsg9
23 7p3ps + 353 = 352(p3 + p4) Bio1
29 13p3ps + 499 = 448(ps + ps) B,
41 25p3ps + 641 = 640(p3 + py) B,

Table 3

Thus p, =47 so that p; =53 and p, =59 in which By <
%.g.g.g—z < 1.59, a contradiction (4.4) . Hence gcd(n, 15) # 3 .

Finally if gcd(n,15) =5 thenp, =5 .if p, = 7 then (4.5) reduce to
17p3ps + 193 = 192(p3 + p4) , an equation of type B,; . Also p, # 11
since 11 = 1(modp;,). Therefore p, > 13,p3 = 17 and p, = 19 in which

5 13 17 19

case By <.—.-.7- < 1519, acontradiction (4.4) . then ged(n, 15) # 5
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Similarly we can show that T;; = T3 = Ty4 = T15 = @, complete the
proof of Lemma 4.1

(4.6) Remark . As already noted the theorem 1.7 follows from
Lemma 4.1 . Note that part (iii) of theorem 1.6 is improved , by showing
T1s = @ . Further using the method illustrated in this paper there is scope
for improving Theorem 1.7 further .

*khkkkk
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