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On Set-Valued Mappings

Abstract :

In this work, we discuss several properties and characterizations
of continuous set-value mappings, we survey and discuss some
weaker forms on this concept, the possibility of dependence of
mathematical concepts on the concept of set-value mappings, as
linearity, integration, differentiation and measurability etc, also we
state and prove some theorems on certain types of set-value
mappings.

Mathematics Subject Classification: 54C08, 54C40, 54C60.

Keywords: Multifunctions, m-Multifunctions, Weaker forms of
continuity and of C-continuity, Upper and Lower
continuity, Upper and Lower -Ccontinuity.
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1- Introduction:

Weaker and stronger forms of points play an important role in
analysis and topology, by using these points many authors introduced
and studied various types of generalizations of sets and so as
mappings, also; one of the important and basic topics in theory of
classical point set topology and in several branches of mathematics,
which has been investigated by many authors, is continuity of
functions, this concept has been extended to the setting of set-value
mappings, There are several weak and strong variants of continuity of
set-value mappings in literature, for instance continuity [95, 127 and
160], strong continuity [6 and 101], super continuity [5], almost and
weak continuity [112, 130-131 and 134], nearly and almost nearly
continuity [36-37], semi-continuity [18 and 133], a.-continuity, almost
a-continuity and weak a-continuity [20, 140 and 142], precontinuity
and almost precontinuity [154], quasi-continuity and almost quasi-
continuity [88, 111, 113, 129, 135 and 141], y-continuity and almost y-
continuity [3 and 40], 3-semicontinuity and &-precontinuity [39 and
123], ¢-continuity and almost ¢-continuity [65], c-continuity and
almost c-continuity [59 and 68], c-quasicontinuous [152] and C-m-
continuous of set-value mapping [116], etc.

Moreover, a set-value mappings have many applications in applied
mathematics and programming such as, optimal control, calculus of
variation, probability, statistics, different inclusions, fixed-point
theorems and even in economics, further; the original basic concept of
functions represent an essential material for many of mathematical
concepts, which the concepts of "Continuity, Differentiability,
Integrability and Measurability etc”, are begin with function, upbuilds
and depends on function, thus functions play significant role in a
subjects of mathematics, so the certain authors studied in good many
of papers which have been extended much of these concepts to setting
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of set-value mappings, that; Y. S. Ledyaev and Q. J. Zhu, in 18 July
2006 introduce and study the concept of “Implicit Multifunction
Theorems" [181], in Sep 2009, Chuji Wang, introduce and study the
concept of "Fiber Loop Ringdown - a Time-Domain Sensing
Technique for Multifunction Fiber Optic Sensor Platforms: Current
Status and Design Perspectives" [176],

In Sep. 2002, EFE A. Ok, introduce and study the concept of
"Functional ~ Representation  of  Rotund-Valued  Proper
Multifunction™ [117], in May-June 2002, E. J. Balder and A. R.
Sambucini, introduce and study the concept of "On weak
compactness and lower closure results for Pettis integrable
multifunctions revision" [15].

In 2000, B. Cascales, V. Kadets and J. Rodrfgusz, introduce and
study the concept of "Measurability And Selection Of
Multifunction In Banach Spaces" [25], in 1991, S. Park, J. S. Bae,
introduce and study the concept of "On zeros and fixed points of
multifunctions with non-compact convex domains™ [120], in 20009,
Bozena Piatek, introduce and study the concept of "On The
Continuity of Integrable Multifunction” [126], in 1995, C. Hess,
introduce and study the concept of "On Measurability of Conjugate
and Subdifferential of Normal Integrand” [55], in May 2003, E. J.
Balder, introduce and study the concept of "Fatou's Lemma for
Multifunctions with Unbounded Values in Dual Space™" [16], in
2007, C. Z alinescu, A. I. Cuza and O. Mayer, introduce and study
the concept of "HahnBanach Extension Theorems for
Multifunctions revisited" [183], in 26-1-1972, H. Schirmer,
introduce and study the concept of "Homotopy for Small
Multifunction™ [161], in 2008, Italy, E. Acerbi, G. Crippa and
D.Mucci, introduce and study the concept of "A variational
problem for couples of functions and multifunctions with
interaction between leaves" [4], in 2004, Erdal Ekici, introduce and
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study the concept of* On some types of continuous fuzzy
multifunction™ [38], in 25 Oct 2004,C. Ursescu, introduce and study
the concept of "Linear openess of multifunctions in metric spaces"
[173], in 1993, S. Park, introduce and study the concept of "Fixed
Point Theory Of Multifunctions In Topological Vector Spaces"
[121], in 2004, J. Fiser, introduce and study the concept of
"Numerical Aspects of Multivalued Fractals” [44], in 1991, D.
Averna and G. Bonanno, introduce and study the concept of"
Existence of solution for multivalued Boundary Value Poblem With
Non-convex And Unbounded Right-Hand Side” [13], in 2001,
D.Dentcheva, introduce and study the concept of "Approximation,
Expansion and Univalued Representation of Multifunction™ [34], in
1998, D. Dentcheva, introduce and study the concept of "Regular
Castaing Representations Of Multimaps With Applications to
Stochastic Programming™ [33], in the left hand; the concepts of
"Multifunctions And Graphs" and "Multifunctions with Closed
Graphs", was study by J. E. Joseph and D. Holy, Trenc¢in [69 and
172],

Also the concepts of "Weaker form of B*-Continuity for Multimap"
and "Upper and Lower NA-continuous Multifunctions™ was introduced
by D. K. Ganguly & C. Mitra, and by S. Yuksel, T. H. Simsekler and
B. Kut [48], And the concept of "Integrability of multifunction" were
introduced by R. J. Aumann, [12], a concept of "Differentiability of
multifunction” were introduced by F. De Blasi, et al, [11, 31, 32, 74,
119, 159 and 171],...etc.

On the other hand; the concept of minimal structure which
introduced by H. Maki in (1996) [84], as set-value mappings defined
between two sets and satisfying certain minimal conditions, also in
(2001) V. Popa and T. Noiri [149], introduced the concepts of "m-
continuous functions™ and "upper and lower m-almost continuous
setvalued map".
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Furthermore; the concept of continuous selection for multifunction
which introduced by E. Michael [89-93] was represented a revolution
in this area, where the many of mathematics applications could
become to be as simulation to that selector single map of set-value
map,

The concept of continuous selection, was good idea and useful
beginning for studying the many of mathematical concepts, since the
selector single-valued function can be represent as an approximation
of set-valued map in the way of contraction or in the other ways,
thus the mathematical concepts as; differentiation of set-valued
maps which are crucial in many applications, and so that a typical
set-valued map arising from some construction or variational
problem will not be continuous, nonetheless; one often expects the
maps to be outer semicontinuous, this however fails in some
applications including generalized semi-infinite programming, thus
there are a different notions of continuity of set-valued maps, which
lead to notion of generalized differentiation of set-valued maps,

In this paper, we introduce and study certain types of continuous
set-value map, and we investigate the relationships among another
types for set-value mapping, also we give and discuss some studied
applications for these types, and we will give some other proposed
applications on these concepts. Our essential contribution, we
investigate and study new application for set-value map on the
concept of homotopy lifting property "H. L. P.", and some
applications of known related concepts are also discussed.

In some books or papers a set-valued map from X to Y is denoted
by F X2, F:XwY or F :X33Y, etc, but we exclusively use here
the notation F : X—Y,

Furthermore, the terms "set-valued map [11]), point-to-set map [56],
correspondences [7], multivalued maps [61, 157-158], multifunction
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[26], are usually used interchangeably; while the first being
frequently used in current work "briefly; SV-map",

In this paper, the word spaces mean topological, and the capital
letters F, H, G,... are denoted to a set-value mappings, and the
small letters f, h, g,... are denoted to a single-mappings, and for a
subset A of topological space (X, 7), CI(A) and Int(A) represent the
closure and interior of A with respect to z, respectively.

We begin with the following terminologies and notions;

A subset A of X is said to be; a-open "resp. semi-open, preopen,
B-open or semi-preopen, b-open or sp-open or y-open”, iff;
AcInt{CI[Int(A)]} "resp. AcCHKInt(A)}, AcInt{CI(A)},
AcCI{Int[CI(A)]}, AcInt{CI(A)}uCI{Int(A)}", and for the
details of all above concepts; see [1, 8-10, 24, 30, 35, 45, 50, 75-76,
82,84-87, 97-98, 102-106, 108-110, 122-123 and 150-151 and 155]

The family of all semi-open "resp. preopen, o-open, [-open,
semi-preopen, b-open” sets in X is denoted by SO(X) "resp. PO(X),
a(X), B(X), SPO(X), BO(X)".

For these families, it is shown in [108-Lemm3.1] that
SO(X)NPO(X)=a(X), since a(X) is a topology for X [103], by a-
CI(A) "resp. a-Int(A)" we denote the closure "resp. interior" of A
with respect to a.(X), the complement of semi-open "resp. preopen,
o-open” subsets is said to be semi-closed “resp. preclosed, o-
closed",

The intersection of all semi-closed sets of X containing A is called
semi-closure [30] of A and is denoted by sCI(A), the union of all
semiopen "resp. preopen” subsets of X contained in A is called the
semi-interior "resp. preinterior” of A and is denoted by s-Int(A)
"resp. prelnt(A)", a subset A of X is said to be regular-open "resp.
regular closed"” if A=Int{CI(A)} "resp. A=CI{Int(A)}", the family of
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regular open "resp. regular closed” subsets of X is denoted by
RO(X) "resp. RC(X)",

A subset E of X is said to be B-open [1], iff ECCK{Int[CI(E)]}, the
family of all g-open subset of X is denoted by BO(X).

Also, by recall the definitions of 6-closure and &-closure due to
Velicko [174], that a point xeX is called ©-cluster "resp. 3-cluster"
point of a subset AcX, iff CI(V)nA=¢ "resp. Int{CI(V )}nA=¢p" for
every open set V containing x, and a set of all ©-cluster "resp. o-
cluster” points of A is called 6-closure "resp. &-closure™ of A and is
denoted by Clg(A) "resp. Cls(A)" [174], a subset A is said to be 6-
closed "resp. 5-closed) if Clg(A)=A "resp. Cls(A)=A", the complement
of 6-closed "resp. 6-closed" set is called 6-open "resp. 5-open”.

The intersection of all &semiclosed sets "resp. semi-closed" of X
containing A is called the &-semiclosure [2] "resp. semiclosure [30]"
of A and is denoted by &SCI(A) "resp. SCI(A)", the union of all &
semiopen sets of X contained in A is called 8-semi-interior of A and is
denoted by &-SInt(A), so, a subset A of X is said to be;

- d-semiopen "resp. 6-semiopen” [2, 39 and 122], iff AcCI{Ints(A)}
"resp. AcCI{Into(A)}",

- O-preopen "resp. 6-preopen” [35, 123 and 155], iff AcInt{Cls(A)}
"resp. AcInt{Cly(A)}",

- 8-sp-open "resp. 6-sp-open™[2 and 54], if AcCI{Int[CIs(A)]} "resp.
AcCH{Int[Cls(A)]}",

A collection of; 3-semiopen "resp. 5-preopen, d-sp-open, 6-semiopen, 6-
preopen, 6-sp-open” subsets of X are denoted by; 8SO(X) "resp. SPO(X),
dSPO(X), 6SO(X), 6PO(X), 6SPO(X)", and these collections are all m-

structures with property that "the union of any family of subsets
belonging to my, also belongs to my",
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It is known that the families of all 5-open and 6-open sets of X are
topologies for X.

Also, a subset EcX is called a-paracompact “or strictly paracompact”,
[21, 67, 83 and 178] iff every cover of E by open sets of X is refined by
a cover of E which consists of open sets of X and is locally finite in X.

For maodifications of open sets defined above, the following
relationships are known:

0-open = J-0pen = open = o-0pen = preopen = J-preopen = O-preopen
U U U U U U
0-semi-open=>8-semi-open=-semi-open=h-open=-sp-open—==3-sp-open=-0-sp-open
2- Preliminaries:

1-2) Definition: [11] ;
A SV-map F : X - Y is a point to set correspondence such that

F(x) = ¢ for all xeX, on the other hand, for each xeX, there exist non-
empty subset F(x) Y,

The "Upper inverse" of a subset K, is define as F'(K)={xeX :
F(xX)cK}, and the "Lower inverse" of a subset K, is define as F ~
(K)={xeX: F(x)nK=¢},

A SV-map F:X—Y is closed/open, iff an inverse image of any closed/open

set is closed/open.
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2-2) Definition:
ASV-map F: X — Yiscalled;

- Upper continuous (U. C.) or Upper semi continuous (U. S. C.), iff
for all xeX, and for any open VcY contain F(x), there is an open
UcX contain X, such that F(U)cV,

- Lower continuous (L. C.) or Lower semi continuous (L. S. C.), iff for
any xeX, and for any open VcY such that F(X)nV=¢, there is open
UcX contain x, such that F(U)n\V=,

- Continuous "Semi Continuous™ iff F has this property at each point
of X.

Note: Some authors, defined the U. S. C., "resp. L. S. C." for SV-map F,

as; iff F *(V) "resp. F (V)" is open in X, for any openset Vin'Y,

- Upper (or Lower) a-continuous "U./L. a-C. (or L. a-C.)" at XoeX, iff
for all open VY contain F(Xo) (or F(xo)nV=9), there is an open
UeaO(X) contain Xg, such that F(U)cV (or F(u)mV=¢, for any
uel).

- Upper/lower a-continuous (U/L. a-C.) at xpeX, iff F has this
property at all xe X.

- Upper/lower almost continuous (U./L. A. C.), "resp. upper/lower
almost a-continuous (U./L. A. a-C.), upper/lower almost quasi-
continuous (U./L. A. g-C.), upper/lower almost pre-continuous (U./L.
A. p-C.), upper/lower almost -continuous (U./L. A. B-C.)", at xoeX,
iff for any open set VY contain F(xo) or F(Xo)n\V=¢, there is an
UeO(X, x) "resp. UeaO(X, x), UeqO(X, x) UePO(X, Xx)
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UeBO(X, x)" contain Xo, such that F(U)cInt{CI(V)} or
F(u)NInt{CI(V)}=¢ for all, ueU,

- U/L. A. C., "resp. U/L. A. a-C., U/L. A. g-C.), U/L. A. p-C.), U/L. A.
B-C.)", iff this property hold for each xe X,

- Upper/Lower b-continuous U. b-C., "resp. L. b-C." at xeX, if for all
open VY contain F(x) "resp. F(x)nV=¢", there is UebO(X, X), s. t.
F(U)<xV "resp. F(u)nV=¢ for all ueU",

- Upper/lower b-continuous (U/L. b-C.), iff F has this property at each
point of X.

- Upper/Lower almost b-continuous "U/L. A. b-C." at xeX, iff for all
VY with xeF (V) "or xeF (V)", there is UebO(X, X) with Uc xeF
{Int[CI(V)]} "or xeF {Int[CI(V)]}",

- Upper/lower almost b-continuous (U/L. A. b-C.), iff F has this
property at all xe X.

For the SV-mapping defined above, the following implications hold:

U. A. continuity = U. A. a-continuity = U. A. pre-continuity

U U

U. A. quasi-continuity = U. A. b-continuity = U. A. B-continuity,
Note that none of these implications is reversible, so we give the
following examples;
Let X=Y={a, b, ¢, d}, and =={¢, {a}, {b, c}, {a b, c}, X},

~v={¢, {a}.{b, d}.{a b, d}, Y},
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Define SV-map F :X — Y, by F(xX)={x}, V X, then F is upper almost 3-
continuous but not upper almost b-continuous, since {b, d}<RO(Y) and
F'({b, d})={b, d} isn't b-open in tx.

Also, let X={a, b, c}, Y={1, 2, 3, 4, 5} and =={¢,{a},{b}.{a,b} X},
wv={0, {1, 2}, {3, 4}, {3, 4,5}, {1, 2, 3, 4}, Y},

Define F : X — Y, by F(a)={1}, F(b)={3,4,5} and F(c)={2},

Then F is upper almost b-continuous but not upper almost
precontinuous .

Also, let X ={1, 2, 3, 4, 5}, =~ ={d, {1, 2}, {3, 4}, {3, 4, 5},

{1,2,3,4}, Y},
Define F :X—=Y, by F(1)={1}, F(2)={3}, F(3)={2}, F(4)={4}, and
F(5)={5},

Then F is upper almost b-continuous but not upper almost quasi-

continuous.

Also, a SV-map F : X — Y is called,

- Upper/Lower S-almost continuous (U./L. A. C. S.), at xoe X, iff for
any open VcY contain F(xo) "or; F(Xo)n\V=¢", there is open UcX
contain Xo, such that F(xX)cInt{CI(V)}, "or; FX)nInt{CI(V)}=¢",
for each xeU,

- S-almost continuous (A. C. S.), iff F has this property at each point of X.

- Upper/lower weakly continuous (U./L.W.C.), at xe X, iff for any open
V contain F(x), "or; F(Xo)nV=¢" there is U contain X, with

F(X)CI(V), "or; F(X)NCI(V)=¢", for all xeU",
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- Weakly continuous (W. C.) at xoe X, iff it has this property at each
point of X.

- Upper almost weakly continuous (U. A. W. C.) at XoeX, "resp.
Lower almost weakly continuous (L. A. W. C.) at xoe X", iff for any
open VY contain F(xo), then xoe Int{CI(F *{CI(V)})}, "resp. iff for
each an open set VcY where F(Xo)n\V=d, then Xpe
Int{CI(F {CI(V)}}",

- Almost weakly continuous (A. W. C.) at Xoe X, iff F has this property at
each xeX.

- Upper quasi-continuous "resp. lower quasi-continuous”, iff for any
xeX, all open VeY containing F(x), there is UeSO(X, X) such that
F(U)cV, "resp. iff for any xeX, and all open VeY such that
F(X)nV=¢, there is UeSO(X, x), such that F(u)nV=¢ for all ueU".

For the above definitions, we put the following remarks and examples;
Reciprocally, if Fis U. A. C. in X, itis obvious U. W. in X, as well,

If Fis L. S-C. in X, itis obvious L. W. in x, as well,

The following implication holds;
-U.SSC= U A C.=U W.C.

-L.SC=L A C.=LW.C.

The reciprocity is obvious, see [9, 11 and 20],
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3-2) Definition :
A SV-map F: X — Y is called,;
- Upper weakly continuous (U. W. C.) iff for each xeX and each

open V containing F(x), there exists an open set U containing x
such that F(U)cCI(V),

- Upper weakly quasi continuous (U. W. g-C.) iff for all xeX, any open
U containing X, and any open V containing F(x), there is a nonempty
open G, where GcU and F(G)cCI(V),

- Upper almost weakly continuous (U. A. W. C.) iff for each xe X and
each open V containing F(x), so that xeInt{CI(F*{CI(V)}}.

- Upper a-continuous (U. a-C.) at xeX, iff for each open V
containing F(x), there exists Uea(X, x) such that F(U)cV .

- Lower a-continuous (L. a-C.) at xe X, iff for each open set V such
that F(X)nV=d, there exists Uea(X, x) such that F(u)nV=¢, for
every ueU,

- Upper/Lower a-continuous, if it is upper (lower) a-continuous at all
xeX,

- Upper almost a-continuous (U. A. a-C.) at xeX, iff for all
UeSO(X, x) and all open V containing F(x), there is a nonempty open
GcU, such that F(G)cCI(V),

- Lower almost a-continuous (L. A. a-C.) at xeX, iff for any
UeSO(X, x), any open V such that F(xX)n\V=¢, there is a nonempty
open GcU with F(g)sCI(V)=¢, for all geG,
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- Upper/Lower almost a-continuous iff F has this property at every
point of X.

- Upper weakly o-continuous (U. W. a-C.) at xeX, iff for all
UeSO(X, x) and any open V containing F(x), there is nonempty
open GcU, such that F(G)cCI(V),

- Lower weakly a-continuous (L. W. a-C.) at xeX, iff for all
UeSO(X, x), any open V with F(X)n\V=¢, there is a nonempty open
GcU, such that F(g)NCI(V)=¢, for all geG,

- Upper/Lower weakly a-continuous, iff F has this property at every

point of X,

- Weak* a-continuous iff for each open VcY; F {Fr(V)} is o-
closed, where Fr(V) denotes the frontier of V,

- a-preopen if for every Uea(X); F(U)cInt{CI[F(U)]}.

For a SV-mapping defined above we have the following diagram;
U. W. quasicontinuous
i
U. a-continuous = U. A. a-continuous = U. W. a-continuous

U

U. A. W. continuous,
- Of course, every A. C. S. SV-map is W. C. SV-map, but the

converse is not true in general, so we give the following example:
Let X={a, b, c}, =={d, {a}, {a, b}, X} and Y={1, 2, 3}, ~={¢, {1}, {1,
2}, Y}, by define F :X—Y as; F(a)={1, 3}, F(b)={1,2} and F(c)={3}, so
that F will be W.C., but not A.C.S,,
- Of course, every W. C. SV-map is A. W. C., but the converse is not

true in general, so we give the following example:
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Let X={a, b, ¢}, ={0, {a, b}, X} and Y={1, 2, 3}, »={¢, {2}, {1, 3}, Y},

We define F :X—Y as; F(a)={2}, F(b)=F(c)={1, 3}, so F will be A. W.
C., butnot W. C,,

For a SV-map F :X—Y, the graph SV-map Gg :X—>XxY is defined as G

={x}xF(x), xeX, and a subset {{x}xF(X) : xeX}c=XxY, is called a

multigraph of F and is denoted by G(F).

4-2) Definition:
A SV-map F: X - Y is called;

- Upper "or Lower) @-semicontinuous, iff for any xeX, any open VcY
such that xeF *(V) "or xeF "(V)", there is #-semiopen set U containing
x such that UcF (V). "or UcF (V)"

- U/L. A-&semicontinuous, iff for any xeX, any open VY, with xeF
(V) "or xeF(V)", there is @-semiopen U containing x, s. t. UcF
*{Int[CI(V)]}, "or UcF “{Int[CI(\)]}",

- Upper/lower weakly é-semicontinuous, iff for any xeX, any open V
with xeF *(V), "resp. xeF "(V)", there is #-semiopen U containing x
with UcF *{CI(V)}, "resp. UcF {CI(V)}",

In 1970, Gentry and Hoyle 11l [51] defined f :X—>Y to be C-

continuous at xeX iff for any open VcY contain f (x) and having

compact complement, there is an open UcX containing X, with
f(U)cV, some properties of C-continuous function studied by P. Long
et al. [80-81 and 118], and in other papers, Neubrunn [100] and Hola
et al. [59] extended this notion to the setting of SV-map, In 1991 Lipski
[78], introduced the notion of C-—quasicontinuous SV-map as
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generalizing of C-continuous and quasi-continuous SV-map, Some
properties of C-quasi-continuous SV-map studied in [152].
In 2008, T. Noiril and V. Popa [116], introduced upper/lower C-m-
continuous SV-map as SV-map defined on a set satisfying some
minimal conditions, so they obtained some characterizations and
several properties of such SV-map which turn out unify some results
established in [59, 78 and 152], so that; a SV-map F : X — Y is
called,;

- Upper C-continuous (U. C. C.), "resp. upper C-quasicontinuous (U.
C. g-C.)", iff for each open subset VcY contain F(x) and having
compact complement, there exist an open "resp. semi-open" subset
UcX contain X, such that F(U)cV,

- Lower C-continuous (L. C. C.), "resp. lower C-quasicontinuous (L.
C. g-C.)" at xeX, iff for each open set VcY meeting F(x), and have
compact complement, there exist an open "resp. semi-open” subset
UcX contain X, such that F(u)nV =¢, for each ueU,

- U./L. C-continuous "resp. U./L. C-quasi-continuous”, iff F has this
property at all xe X.

For the SV-map defined above, the following implications hold:

"U. S. continuous = U. C. continuous = U. C. g-continuous";
"L. S. continuous = L. C. continuous = L. C. g-continuous",

Also, T. Noiril and V. Popa [116], defined the following
modifications of upper/lower C-continuous SV-map, so that, a SV-

map F : X — Y is called,;
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- Upper C-a-continuous "resp. upper C-precontinuous, upper C-b-
continuous, upper C-sp-continuous™ at xe X, iff for all open V contain
F(x) and having compact complement, there is c.-open "'resp. preopen,
b-open, semi-preopen™ U contain X, such that F(U)cV,

- L. C-a-continuous "resp. L. C-precontinuous, L. C-b-continuous, L. C-
sp-continuous” at xe X, iff for any open VcY meeting F(x), and have
compact complement, there is o-open "resp. preopen, b-open, semi-
preopen” UcX contain X, s. t. F(u)n\V =¢, for each ueU,

- Upper/Lower C-continuous "resp. upper/lower C-precontinuous,
upper/lower C-b-continuous, upper/lower C-sp-continuous™ if it has
this property at each xe X.

For SV-map defined above, the following relationships hold:

"upper semicontinuity = upper a-continuity", and;
Upper C-conts = Upper C-a-conts = Upper C-preconts
Upper C-quasi-conts = Upper C-b-conts = upper C-sp-conts

However, the converse implications are not true in general, and the

analogous diagrams holds for the case of "lower".

There are several another types of continuity, so we can given further

modifications by similar way, that a definition of any set, will be

motivates to new types of these concepts, We enthrone this reviewing by

the following modifications conclusions;
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5-2) Definition:
A SV-map F: X — Y is called,;
- Upper almost C-continuous (U. A. C-C.) "resp. Lower almost C-

continuous (L. A. C-C.)" at xe X, iff for any open V with F(x)cV, and
has compact complement, there is open U with xeU, such that
F(U)cV, "resp. if for any open V with F(xX)nV=¢, and has compact
complement, there exist an open UcX contain X, such that F(z)n\V=¢,
for each zeU",

- Almost C-continuous at xe X, iff it is both (U. A. C-C.) and (L. A. C-C)),
atxeX,

- Almost C-continuous, iff it is AImost C-continuous at each xe X,

- Upper almost C-semicontinuous (U. A. C. S-C.) at xeX, iff for any
compact C with F(X)NC=¢, there is open UcX contain X, such that
F(z)NCI{Int(C)}=¢ for zeU,

- Lower almost C-semicontinuous (L. A. C. S-C.) at xeX, iff whenever
Y\V is compact and F(X)~V=¢, there is open U contain X, such that
F(2)NCKInt(V)}=¢, for all zeU,

- A. C. S-continuous at xe X, iff it is both (U. A. C. S-C.) and (L. A. C. S-
C.),atxeX,

- Almost C. S-continuous, iff it is Almost C. S-continuous at each xeX.

It is clear that; F is U./L. S-continuous, implies that F is U./L. A. C-

continuous, and the following examples shows that these implications

are not reversible in general,
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Let X and Y be the set of real R, u and t be the usual and cofinite-
topologies on X, Y resp.,
Define the SV-map F:X—Y:; as follows:
X}, xe{l,2,...n
Fooo] O xel2e.ny
{L2,....n}, xe{l2,....n}

Then F is U. A. C-continuous, in fact F is A. C-continuous, but it is not

U./L. S-continuous, because V=R\{1, 2,..., n}et, but not F *(V) nor F*(V)

belongs to u,

Let X={a, b, c,d}, Y={1, 2 3,4} and »={¢, {a}, {b}, {a b}, {a, ¢, d}, X}, n={¢d,
{13:{12.Y},

We define F :X—>Y as; F(@={4}, F()={1, 2}, F(c)={3} and
F(d)={4},

So F will be U./L. S-continuous, and hence it is U./L. A. C-continuous,
but it is not U./L. A. C. S-continuous at d, note that; C={1, 2, 3} is
compact, and F(d)nC=¢, CI{Int(C)}=Y, so that; there is no U contain
d, such that F(x)NCI{Int(C)}=¢ for all xeU.

6-2) Definition: see [116],
A SV-map F: X - Y is called;
- Upper C-6-continuous "resp. upper C-6-precontinuous, upper C-6-

semicontinuous, upper C-6-sp-continuous™ at xeX, iff for any open
Vcontain F(x) and V' is compact, there is 6-open “resp. 6-preopen, 6-
semiopen, 6-sp-open" U contain X, such that F(U)cV,

- L. C-6-sp-continuous "resp. L. C-0-precontinuous, L. C-6-

semicontinuous, L. C-6-sp-continuous™ at xeX, iff for any open V
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meeting F(x), and V' is compact, there is 6-open "“resp. 6-preopen, 0-
semiopen, 6-sp-open” U contain X, such that F(u)nV =g, for all ueU,

- UJL. C-6-continuous "resp. U./L. C-6-precontinuous, U./L. C-0-
semicontinuous, U./L. C-6-sp-continuous”, iff this property holds for
each xeX.

- U. C-6-continuous "resp. U. C-é-precontinuous, U. C-&-
semicontinuous, U. C-6-sp-continuous™ at xe X, iff for all V contain
F(x) and V° is compact, there is 5-open "resp. 8-preopen, 8-semiopen,

d-sp-open™ UcX contain X, where F(U)cV,

L. C-d-sp-continuous “resp. L. C-d-precontinuous, L. C-&-
semicontinuous, L. C-38-sp-continuous” at xeX, iff for any open V
meeting F(x), and V© is compact, there is 5-open "resp. &-preopen, &-

semiopen, 3-sp-open™ U contain X, such that F(u)nV =g, for all ueU,

U./L. C-8-continuous "resp. U./L. C-&-precontinuous, U./L. C-6-
semicontinuous, U./L. C-3-sp-continuous”, if it has this property for
each xeX.
For the SV-map defined above, the following relationships hold;

U. quasi-continuous<=U. 6-semicontinuous=U. almast 6-semicontinuous=U.

weakly 6-semicontinuous.

The following examples show that these implications are not
reversible;
Let X={a, b, c}, =« ={¢, {a}, {c}, {a, c}, {b, c}, X},
Define F :X—X by; F(a)={a}, F(b)={b} and F(c)={c},
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Then F is upper almost 6-semicontinuous, but not upper 6-
semicontinuous,

Also, let X={a, b, c, d}, »={¢, {a}.{c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}, X3},

Define F :X—X by; F(a)={a, b}, F(b)={d} and F(c)=F(d)={a, c, d},

Then F is upper weakly 6-semicontinuous, but not upper almost 6-
semicontinuous,

And we have the following implications:

U/L C.8-conts= U/L C.8-conts= U/L C.conts= U/L C.p.conts= U/L C.&-p.conts=> U/L. C.8-p.conts

U U U U U U

U/L C.8-s.conts=U/L C.é-s.conts=U/L C.g.conts=U/L C.sp.conts=U/L C.é-sp.conts=U/L C.8-sp.conts

In (1996), H. Maki [84], introduced the concept of minimal structure
defined on a set, In (2001) V. Popa and T. Noiri [148], introduced the
concept of m-continuous functions, And the concept of upper and
lower m-almost continuous SV-map, also in [96] we studied the
concept of m-continuous SV-map and we proved some result in this
area.
So that we give the following definition,

7-2) Definition:
A subfamily mx of power set P(X) of nonempty X, is called an

minimal structure (briefly m-structure) on X, if emy, and Xemy,
Each member of my is called my-open, and their complements is called
mx-closed, For any nonempty X, the pair (X, my) is called m-structure
space, Let X is a nonempty, and my is an m-structure on X, for a subset
A of X, the mx-closure

and mx-interior are defined as follows:

- mx-ClI(A)=n{F : AcF and X - Femy},
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- mx-Int(A)=U{U : UcA and Uemy},
Note: Let (X, t) be a topological space and A is any subset of X, if
=My, then;
mx-CI(A)=CI(A) and mx-Int(A)=Int(A),

Let my be an m-structure on nonempty X, for a subsets A, B<X, the

following are holding:

1) mx -CI(X - A)= X -{mx - Int(A)}, and mx-Int(X - A)= X -{mx -
CI(A)}.

2) If (X - A)emy, then mx -CI(A)=A, and if Aemy, then mx -
Int(A)=A,

3) mx -Cl($p)=0, mx - CI(X)=X, mx-Int(¢)=¢ and mx - Int(X)=X,

4) If A c B, then my - CI(A)cmy - CI(B), and mx - Int(A)c mx -
Int(B),

5) If A < mx- CI(A), and mx - Int(A)cA,

6) my — CI{myx - CI(A)}=mx - CI(A), and myx - Int{mx - Int(A)}=mx -
Int(A).

A minimal structure mx on nonempty set X is said to be has property

"p", if the union of any family of subsets are belong to my..,

A SV-map F :(X, mx)—>(Y, my) is calld;

- Upper m-continuous, iff for each xeX and each Vemy containing

F(x), there exist Uemy containing X, such that F(U)cV,
- Lower m-continuous, iff for each xeX and each Vemy such that
F(X)nV=0, there exist Uemx containing X, such that F(u)nV=¢, for

any ueU.
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Note: Let (X, t1) and (Y, 12) be a topological spaces, we put t=my, then;
an upper (lower) m-continuous SV-map F :(X, my)—(Y, 1) is an
upper (lower) continuous SV-map.

Let X and Y be nonempty sets with minimal structure mx, my resp., an

m-almost continuous SV-map, F : (X, mx) — (Y, my) is said to be;

- Upper m-almost continuous, iff for each xeX and any Vemy
containing F(x), there is Uemx containing X, such that F(U)c my -
Int{(mv - CI(V)},

- Lower m-almost continuous, iff for each xeX and Vemy such that
F(X)NV = ¢, there is Uemx containing X, where F(u)~my -Int{(my -
CI(V)}=¢, for any ueU.

Of course, every m-continuous SV-map is m-Almost continuous, but

the converse is not true in general, so we have the following example,

Let X={a, b, c}, mx={¢, {a, b}, {c}, X} and Y={1, 2, 3}, my={0, {1}, {2},

{1, 2}, Y}, s0o a SV-map F :(X, mx)—>(Y, my), where F(a)={1, 2} and

F(b)=F(c)={3}, is; M-almost continuous SV-map, but not m-

continuous SV-map.

A minimal structure on space X is said to be an m-semiregular, iff for

any xeX and mx-open U containing X, there is an my-open V, such that

xeVcmy - Int{(mx - CI(V)}cU,

Note: An m-space (X, my) is called m-regular, iff for any mx-closed F,

and xgF, have disjoint mx-nbds, in other words, there is two mx-open U,

V,s.t. FcU, yeV and UnV=¢,
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Let my, my be a minimal structures on nonempty X, Y resp., if a SV-map
F (X, myx)—(Y, my) is m-Almost continuous, where Y is m-regular
space, then F is m-continuous SV-map.

Before giving the next definition, we must point to the following

notions,

- A cover of any space X by an open sets is said to be an open cover,

- A cover of any space X by an mx-open sets is said to be an mx-open

cover.

- A set M in topological space X is called strictly m-paracompact iff
every my-open cover for M in X can be refined by locally finite my-
open cover in X.

So we nave the following definetions modifications;

8-2) Definition:
Let (X, myx) be an m-space, a subset A of X is said to be; mx-b-

open iff;

Acmy — C{my - Int(A)}u{my - Int[myx - CI(A)]}, the complement of an
mx-b-open set is called mx-b-closed, the family of all mx-b-open sets in
(X, my) is denoted by mx-bO(X).

In particular, the family of all mx-b-open of (X, mx) containing xeX is
denoted by myx-bO(X, x), and the family of all mx-b-closed in (X, my)
is denoted by mx-bC(X).

For the above definetions, we give the following remmarks and

examples,
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If (X,mx) is an m-space, then every mx-open set is mx-b-open, but an
Mx-b-open set is not necessary to be mx-open in general as shown in
the following examples,

Let X={a, b, c} and mx={¢, {a}, {b}, X}, so {a, b} is mx-b-open but it
IS not my-open.

Let X={a, b, c, d, e} and my={¢, {a}, {e}, {c, d},X}, so {a, b, c} and
{b, d, e} are mx-b-open, but {a, b, c}N{b, d, e}={b} is not mx-b-open.

9-2) Definition:
A subset Ny of m-space (X, my) is said to be mx-neighbourhood

"resp. mx-6-nbd, mx-6-pre-nbd, my-b-nbd" of an point xeX if there
exsts a my-open "resp. mx-8-open, mx-3-preopen, mx-b-open™ set U,
such that xeUSN.

Let (X, mx) be an m-space and a subset AcX, the mx-b-closure of A,
denoted by mx-b-CI(A), and the mx-b-interior of A, denoted by mx-b-
Int(A), are defined, respectively, as;

- mx-b-CI(A)=n{U : X-Uemx-bO(X), AcU},

- mx-b-Int(A)=U{W : Wemx-bO(X), WSA},

Also, we need to the following definition;

10-2) Definition: see [125 and 175],
A subset H of m-space (X, my) is said to be mx-regular open "resp.

myx-preopen”, iff H= mx -Int(mx -CI(H)) "resp. HS mx—Int{mx -CI(H)}",
the complement of an myx-regular open "'resp. mx-preopen” set is said to
be mx-regular closed "'resp. mx-preclosed”,

Let A be a subset of m-space (X, mx);
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- The intersection of all my-preclosed sets of X containing A is called
mx-preclosure of A and is denoted by mx-pCI(A), and the union of
all my-preopen sets of X contained in A is called mx-preinterior of
A and is denoted by mx-pInt(A).

Let A be a subset of m-space (X, mx);

- The union of all my-regular open sets of X contained in A is called
mx-o-interior of A and is denoted by mx-dInt(A).

- A subset AcX is called 6-open, iff A=mx-dInt(A), the complement of -
open is 6-closed.

A subset H of m-space (X, myx) is called mx-6-preopen, iff HC mx-
Int{mx-3CI(H)}, the complement of mx-6-preopen is called my-o-
preclosed.

Let A be a subset of m-space (X, mx);

- The intersection of all mx-6-preclosed of X containing A is called mx-
d-preclosure of A and is denoted by mx-6-pCI(A).

- The union of all mx-3-preopen of X contained in A is called my-5-
preinterior of A and is denoted by mX-5-pInt(A).

Let F :(X, mx)—(Y, o), of m-space (X, mx) to topological space (Y, 6), SO
F is said to be:
- Upper 8-m-precontinuous at xeX, iff for each open V containing

F(x), there exists an mx-d-preopen set U containing X, such that
F(U)cV,
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- Lower &-m-precontinuous at xeX iff for each open V such that
F(x)NV=, there exists an my-6-preopen U containing X, such that
F(z)NV=¢ for every zeU,

- Upper/Lower &-m-precontinuous, iff F has this property at each

point of X.

- Upper almost 8-m-precontinuous at xeX, iff for each open V, such
that x€F *(V), there exists an mx-8-preopen U containing X, such
that USF *{Int[CI(V)]},

- Lower almost 3-m-precontinuous at XxeX, iff for each open V, such
that xeF (V), there exists an my-6-preopen U containing X, such
that UcF {Int[CI(V )]},

- Upper/Lower almost d-m-precontinuous, iff F has this property at

all point of X.

A SV-map F :(X, mx)—>(Y, o), of m-space (X, myx) into topological space

(Y, o), is called;

- Upper b-M-continuous at xeX, iff for any open VeY such that
F(X)CV, there exist Uemx-bO(X, x) such that F(U)CV,

- Lower b-M-continuous at xeX, iff for each open VeY such that
F(X)NV=0, there exists UE mx-bO(X, x) such that F(u)nV=¢, for
every ue!,

- And F is called upper/lower b-M-continuous if F is upper/lower b-M-

continuous for all xeX.
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For the above definetios, we give the following examples;

Let X={a, b, c} and Y={1, 2}, define mx={¢, {a}, {b}, {a c},{b, c}, X},

and oy ={¢, {1}, Y}, so a SV-map F :(X, mx)—(Y, o) which defined

as; F(a)=F(b)={2} and F(c)=Y, is to be upper b-M-continuous.

Let X={a, b, c} and Y={1, 2}, define minimal structure mx={¢, {a},

{b}, {a, c}, {b, c}, X} on X, and a topology oy ={¢, {1}, Y} on Y, so

a SV-map F : (X, mx)—(Y, o) which defined as; F(a)=F(b)=Y and

F(c)={1}, is to be lower b-M-continuous.

Also, a SV-map F :(X, mx)—(Y, o), is said to be;

- Upper almost b-M-continuous at xeX, iff for each open set VeY
such that xSF *(V),
there exists Uemy-bO(X, x) such that USF *{Int[CI(V)]}, and F is
called upper almost
b-M-continuous if F is upper almost b-M-continuous for all xeX.

- Lower almost b-M-continuous at xeX, iff for each open VeY such
that XSF “(V), there exists Ue mx-bO(X, x) such that UCF ~
{Int[CI(V)]}, and F is called lower almost b-M-continuous if F is
lower almost b-M-continuous for all xeX.

For the above definetios, we give the following remmarks and
examples;

"U. b-M-continuous = U. A. b-M-continuous",

But this implication is reversible, so we give the following example;

Let X={a, b, ¢, d} and Y={1, 2, 3}, with mx={@, {c}, {d}, X}, and oy

={0, {1}, Y}, so a SV-map F :(X, mx)—(Y, o) which defined as;
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F(a)={1}, F(b)={1, 2} and F(c)=F(d)=Y, is to be upper almost b-M-
continuous, but it is not upper b-M-continuous.

Also, we have that; "L. b-M-continuous = L. A. b-M-continuous”,

But this implication is reversible, so we give the following example;
Let X={a, b, ¢, d} and Y={1, 2, 3}, with mx ={®, {c}, {d}, X}, and oy
={@, {1}, Y}, so a SV-map F :(X, mx)—(Y, o) which defined as;
F(a)={1}, F(b)=Y and F(c)=F(d)={2, 3}, is to be lower almost b-M-

continuous but it is not lower b-M-continuous.

For a SV-map F, defined above, the following implication hold:
"Upper 6-m-precontinuity = Upper almost 6-m-precontinuity”
Note that none of these implication is reversible, so we give the

following example;

Let X={a, b, c} and Y={1, 2, 3, 4, 5}, with mx ={¢, {b}, {c}, {b, c}, X} and
v ={d, {1, 2, 3,4}, Y}, define F :(X, mx)—(Y, o), by F(a)={3}, F(b)={2,
4} and F(c)={1, 5}, then F is U. A. 8-m-pre-continuous, but not U. -m-
precontinuous, since {1, 2, 3, 4}€ty, and F "({1, 2, 3, 4, 5})= {a, b} is
not mx-4-preopen in X.

3- Main results:

In this section, we discuss and prove some results on the concept of
U/L. 8-m-pre-continuous, we begin with the following four theorems
which due to the E. Ekici [40], that he collect many of important basic
terms for the generalize forms of SV-map.
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1-3) Theorem: [39],
Let F : X—>Y be a SV-map, then the following statements are

equivalent;

1- Fis U. A. 3-semicontinuous SV-map,

2- F*{Int[CI(V)]}<8-SO(X), for any open VY,

3- F {CI[Int(K)]}€5-SC(X), for any closed KcY,

4- F*(G)e8-SO(X), for any regular open GcY,

5- F(E)€6-SC(X), for any regular closed ECY,

6- Forall xeX, any open V and F(X)cV, there is 5-semiopen U and xeU, such
that F(U)S.CI(V),

7- F*(V) =8-S.Int{F *{S.CI(V)}, for all open VY,

8- 0-S.CI{F [S.Int(K)]}<F "(K), for all closed KcY,

9- 5-S.C{F (CI[Int(K)])}<F "(K), for all closed KcY,

10- 3-S.CK{F (V)}<F {CI(V)}, for each VebO(Y),

11- 8-S.CI{F ~(V)}<=F {CI(V)}, for each VeS.0(Y),

12- F*(V)8-S.Int{F *{Int[CI(V)]}, for every VepO(Y),

2-3) Theorem: [39],
Let F:X—>Y be a SV-map, then the following statements are

equivalent;

1- Fis L. A. 8-semicontinuous SV-map,

2- F {Int[CI(V)]}5-SO(X), for any open VY,
3- F{CI[Int(K)]}€8-SC(X), for any closed KcY,
4- F(G) €6-SO(X), for any regular open GcY,

5- F*(E) €8-SC(X), for any regular closed ECY,
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6- Forall xeX, any open V with F(X)\V=¢, there is 5-S.open U and xeU, s. t.
F(u)S.CI(V)=,

7- F (V) <5-S.Int{F {S.CI(V)}, for all open VY,

8- 5-S.CI{F "[S.Int(K)]}<F *(K), for all closed KcY,

9- §5-S.CI{F *(CI[Int(K)])}<F *(K), for all closed KcY,

10- 8-S.CI{F *(V)}<F "{CI(V)}, for each VebO(Y),

11- 5-S.CI{F *(V)}<=F *{CI(V)}, for each VeS.O(Y),

12- F(V)<o-S.Int{F “{Int[CI(V)]}, for every VepO(Y),

3-3) Theorem: [39],
Let F : X>Y be a SV-map, then the following statements are

equivalent;

1- Fis U. W. &-semicontinuous SV-map,

2- For each xeX and each open V containing F(x), there exists an o-
semiopen U containing X, such that F(U)cCI(V),

3- F*(V)cCI{s-Int(F *[CI(V)])}, for any open VY,

4- Int{3-CI[F (V)]}<F {CI(V)}, for any open VY,

5- Int{3-CI(F [Int(K)]}<F "(K), for any closed KcY,

6- 6-S.CI{F [Int(K)]}<F (K), for any closed KcY,

7- 6-S.CI{F (Int[CI(E)])}<F {CI(E)}, for any subset ECY,

8- F *{Int(E)}=5-S.Int{F *(CI[Int(E)])}, for subset ECY,

9- F*(V)8-S.Int{F "[CI(V)]}, for any open VY,

10- 8-S.C{F (V)}<F {CI(V)}, for any open VY.
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4-3) Theorem: [39],
Let F : X>Y be a SV-map, then the following statements are
equivalent;
1- Fis L. W. 3-semicontinuous SV-map,
2- For each xeX and each open V such that F(X)n\V=d, there exists an
d-semiopen U containing X, such that if yeU, then F(y)nCI(V)=¢,
3- F(V)cCI{5-Int(F [CI(V)])}, for any open VY,
4- Int{5-CI[F *(V)]}<=F *{CI(V)}, for any open VY,
5- Int{8-CI(F "[Int(K)]}<F *(K), for any closed K,
6- 5-S.CIH{F "[Int(K)]}<F *(K), for any closed K,
7- 8-S.CI{F *(Int[CI(E)])}<F *{CI(E)}, for any subset ECY,
8- F {Int(E)}=5-S.Int{F "(CI[Int(E)])}, for subset ECY,
9- F(V)o-S.Int{F [CI(V)]}, for any open VY,
10- 8-S.CI{F *(V)}<F *{CI(V)}, for any open VY,
In the end of this section we state and prove the following four
theorems, but in beigen we need to the following lemma,
5-3) Lemma: [112],
For a SV-map F :X—Y, and any subsets AcX, BcY, the following
assertions hold:
1- G (AxB)=AnF"(B),
2- G- (AxB)= ANF~(B).

6-3) Theorem:
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Let F :X—]] X, be SV-map from topological space X to product
il
space[ [ X;and let Pi : ][ X; —X; be the projection for all i<l, so if F is
iel iel
U./L. 3-m-precontinuous, then P; = F is U./L. 3-m-precontinuous SV-
map for each iel.

Proof:
We shall prove this only for the upper case, and the lower case is
similar,

Let Vi be an open in X;, since Pi(Vix[[X;) is open, so take

iel

{Pi ° F}(x)cPi(Vix HXi ),

iel
Since {P; » F}(x)= Pi{F(X)}, and F is U. 3-m-p-continuous, also P; is
continuous,

So that; there exists an mx-d-preopen set U containing X, such that
FU)cVix ][ X;,
iel
And hence; {Pi ° FHU)cPi(Vix[[X;), then F - P; is U. &-m-
iel

precontinuous SV-map.

7-3) Theorem:
Let F :X—Y be maultifunction, and E be an my-3-open set in X, if F is

U/L. 5-m-precontinuous, so the restriction SV-map F|E :E—Y is U./L. &-

m-precontinuous.

Proof:
Suppose that V is an open in Y, let xeE and F(x)cV,

Since F is U. 6-m-precontinuous, it follows that there exists an mx-o-

preopen G,
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where xeG and F(G)cV, so that xeGNEed-mx-pO(E), and
{FIEHGNE)xV,

Thus, we show that the restriction SV-map FE is U. &-m-
precontinuous,

The proof of the lower case is similar to that given above.

8-3) Theorem:
Let F :X—Y be maultifunction, if the graph SV-map of F is U/L. -m-

precontinuous, then F is U/L. 3-m-precontinuous.

Proof:
Suppose that G :X—YxY is U. 3-m-precontinuous, xe X and V be any

open of Y containing F(x), Since XxV is open in XxY and Gg(X)cXxV,
there is Uemx-6-pO(X, x) such that Gg(U)cXxV, and we have Uc
G (XxV)=XnF*(V)=F*(V) "by Lemma 5-3",

So F(U)cV, which showes that F is U/L. -m-precontinuous.

The proof of the lower case is similar to that given above.

9-3) Theorem:
Suppose that F; :X—>Y and F, :X—>Z are SV-map, let F; x F,

:X—>YxZ be a SV-map which defined by {F1 x F2}(X)=F1(x) x Fa(x),
for all x, if F1x F, is U/L. W. &-precontinuous, then F; and F; is U/L.

W. &-precontinuous.

Proof:
Let xeX and V1, V, be any open sets of Y, Z resp., with xe K" (V,) and

Xe I:2Jr (VZ) '
Such that; F1(X)c Vi, F2(X)c V2, hence Fi(X)xF(X)={F1 x Fo}(X)c=V1x Vo,
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And thus; xe{F; x F2}" (V1 x V,), it follows that there exists §-preopen
U containing x such that Uc{F; x Fo}" [CI(V1 x V,)], we obtain that

Uc FA{CI(V,)} and Uc F;{CI(V,)}

Therefore F; and F; is U. W. 8-precontinuous.

The proof of the lower case is similar to that presented above.
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